A Transdisciplinary Approach to the Study of Musical Phenomena: Fuzzy Set Theory and Its Application to Music Research and Educational Practice

Irina B. Gorbunova, Imina G. Alieva

Abstract


The post-nonclassical paradigm of contemporary science is characterized by its striving for the most holistic knowledge possible. The cornerstone of this knowledge is synergy, a theory of self-organization that facilitates theintegration of diverse approaches to the study of phenomena. The integration of quantitative and qualitative research methodologies within a transdisciplinary framework is considered to be a pivotal tool in this context. Transdisciplinaritymeans going beyond individual discipline boundaries to uncover universal patterns in the organization of new knowledge.Applying a transdisciplinary approach to pedagogy enables the development of a novel educational concept meeting the thedemands of contemporary society. This article continues a comprehensive, multi-component investigation aimed at elucidating the issues of employing a transdisciplinary approach, which provides a robust foundation for the qualitative and quantitative evaluation of musical phenomena through the application of contemporary music computer technologies (MCT) and their influence on various spheres of musicology. The authors highlight the significant contributions of the outstanding Russian musicologist Mikhail Sergeyevich Zalivadny (1946–2023), who formulated foundational ideas in developing a comprehensive model of the semantic space of music. The authors emphasize that the use of MCT inscientific research on this issue serves as the basis for creating novel theoretical and experimental-practical tools forstudying music, including the exploration of uncertainty factors in music analyzed through MCT. The article also addresses issues related to the need for training specialists in various fields of activities associated with digital music technologies within the contemporary media culture space, as well as the formation of concepts corresponding to this innovative humanitarian-technological direction.

Keywords: Mikhail Sergeyevich Zalivadny, music computer technologies (MCT), music education, synergetic approach, fuzzy set theory, transdisciplinarity


Full Text:

PDF

References


Gorbunova I.B., Zalivadny M.S. The complex model of the semantic space of music: structure and features. Problemy muzykal'noi nauki / Music Scholarship. 2020, no. 4, pp. 20–32. (In Russ.) https://doi.org/10.33779/2587-6341.2020.4.020-032

Gorbunova I.B., Zalivadny M.S. About applying of probabilistic-statistic methods in studying legular laws of music and musical-pedagogical research. Problemy muzykal'noi nauki / Music Scholarship. 2022, no. 1, pp. 35–49. (In Russ.) https://doi.org/10.33779/2782-3598.2022.1.035-049

Gorbunova I.B., Zalivadny M.S. The trans-disciplinary approach to the study of musical phenomena: probability theory and its application to music theory and practice. Art Criticism. 2023, no. 4, pp. 17‒32. (In Russ.)

Gorbunova I.B., Zalivadny M.S. The zonal theory of musical time and the trans-disciplinary approach to the study of musical phenomena. Problemy muzykal'noi nauki / Music Scholarship. 2023, no. 3, pp. 8‒22. (In Russ.) https://doi.org/10.56620/2782-3598.2023.3.008-022

Gorbunova I.B., Zalivadny M.S. The trans-disciplinary approach to the study of musical phenomena: the information theory and its impact on various fields of musicology. Problemy muzykal'noi nauki / Music Scholarship. 2024, no. 2, pp. 180–199. (In Russ.) https://doi.org/10.56620/2782-3598.2024.2.180-199

Haluška J. Equal temperament and pythagorean tuning: a geometrical interpretation in the plane. Fuzzy Sets and Systems. 2000, vol. 114, pp. 261–269.

León T., Liern V. A fuzzy framework to explain musical tuning in practice. Fuzzy Sets and Systems. 2013, vol. 214, pp. 51–64.

Kiseliova T., Kiendl H., Rambinintsoa Y. Fuzzy rules in computer-assisted music interpretation. Proceedings of the 2005 International Computer Music Conference, ICMC 2005. Barcelona, Spain, September 4–10, 2005. Ann Arbor: Michigan University Publ., 2005, vol. 2005.

Arcos J.L. Music and similarity based reasoning. Soft Computing in Humanities and Social Sciences. Studies in Fuzziness and Soft Computing. 2012, vol. 273, pp. 467–478. https://doi.org/10.1007/978-3-642-24672-2_24

Kumar C., Dutta S., Chakraborty S. Hiding messages using musical notes: a fuzzy logic approach. International Journal of Security and Its Applications. 2015, vol. 9, no. 1, pp. 237–248. https://doi.org/10.14257/ijsia.2015.9.1.23

Martínez-Rodríguez B., Liern V. Mercury: A software based on fuzzy clustering for computer-assisted composition. Mathematics and Computation in Music. Lecture Notes in Computer Science. Proceedings of the 7th International Conference, MCM 2019, Madrid, Spain, June 18–21, 2019, vol. 11502, pp. 236‒247. https://doi.org/10.1007/978-3-030-21392-3_19

Guliyev J., Memmedova K. Fuzzy logic-based compositional decision making in music. 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing ICAFS-2018, Warsaw, Poland, August 27–28, 2018. Cham, Switzerland: Springer, 2019, pp. 741–745. https://doi.org/10.1007/978-3-030-04164-9_97

Yang X., Dong Y., Li J. Review of data features-based music emotion recognition methods. Multimedia Systems. 2018, vol. 24 (4), pp. 365–389. https://doi.org/10.1007/s00530-017-0559-4

Chibirev S., Gorbunova I. Computer modeling in musical creative work: an interdisciplinary research example. Technology, Innovation and Creativity in Digital Society. PCSF 2021. St. Petersburg, October 26–27, 2021. Cham, Switzerland: Springer, 2022, vol. 345, pp. 474‒483. https://doi.org/10.1007/978-3-030-89708-6_40

Chibirev S., Gorbunova I. Algorithmic modeling of arts and other hard-to-formalize subjects. International Journal of Recent Technology and Engineering. 2020, vol. 8, issue 6, pp. 2655‒2663. https://doi.org/10.35940/ijrte.F7722.038620

Sajjad A. Iranian traditional music Dastgah classification. 12th International Society for music information retrieval conference ISMIR 2011, Miami, Florida, USA, October 24–28, 2011. Miami: University of Miami Press, 2011, pp. 275–280.

Ali Nagi-han Vaziri. A new look at the theory of Iranian music. Trans. by Kamal' Portrab M. Tehran: Nay and Ney Publishing. 232 p. (In Persian.)

Ulaganathan A. S., Ramanna S. J. Granular methods in automatic music genre classification: a case study. Journal of Intelligent Information Systems. 2019, vol. 52, pp. 85–105. https://doi.org/10.1007/s10844-018-0505-8

Fernandez F., Chavez F. Fuzzy rule based system ensemble for music genre classification. Proceedings of the First International conference on evolutionary and biologically inspired music, sound, art and design: EvoMUSART 2012, Malaga, Spain, April 11–13, 2012. Berlin, Heidelberg: Springer, 2012, pp. 84–95. https://doi.org/10.1007/978-3-642-29142-5_8

Cádiz R.F. Creating music with fuzzy logic. Frontiers in Artificial Intelligence. 2020, vol. 3, issue 59. https://doi.org/10.3389/frai.2020.00059

Kagan M.S. Personality formation as a synergetic process. In: Synergetic paradigm. Man and society in conditions of instability. (Каган М.С. Формирование личности как синергетический процесс. В: Синергетическая парадигма. Человек и общество в условиях нестабильности). Moscow: Progress-Traditsiya Publ., 2003. 584 p.

Busov S.V. M.S. Kagan’s synergetic model of culture in the context of philosophical discussions on the boundaries of personal freedom in the second half of the twentieth century. Sotsial'no-gumanitarnye znaniya. 2024, no. 3, pp. 75‒78. (In Russ.) https://doi.org/10.24412/0869-8120-2024-3-75-78

Arshinov V.I. Synergetics comes with complexity. In: The synergetic paradigm: the synergetics of innovative complexity: on the 70th anniversary of V.I. Arshinov. (Аршинов В.И. Синергетика встречается со сложностью. В: Синергетическая парадигма: синергетика инновационной сложности: к 70-летию В.А. Аршинова). Moscow: Progress-Traditsiya Publ., 2011, pp. 47–66.

Tsvetkov V.Ya. Information synergetics. Educational resources and technologies. 2021, no. 2 (35), pp. 72‒78. (In Russ.) https://doi.org/10.21777/2500-2112-2021-2-72-78

Knyazeva E.N., Kurdyumov S.P. Fundamentals of synergetics. Book 1: A synergetic worldview. (Князева Е.Н., Курдюмов С.П. Основания синергетики. Кн. 1: Синергетическое мировидение). Moscow: Publ. House URSS, 2018. 254 p.

Gorbunova I.B., Zalivadny M.S. The problem of structuring a universal range of heights and durations in music. (Горбунова И.Б., Заливадный М.С. Проблема структурирования всеобщего диапазона высот и длительностей в музыке). The world of science, culture and education. 2017, no. 4, pp. 149‒150. (In Russ.)

Gorbunova I.B., Zalivadny M.S. Leonhard Euler’s theory of music: its present-day significance and influence on certain fields of musical thought. Problemy muzykal'noi nauki / Music Scholarship. 2019, no. 3, pp. 104‒111. https://doi.org/10.17674/1997-0854.2019.3.104-111

Gorbunova I.B. Musical computer. ICONI. 2020, no. 2, pp. 60‒78. (In Russ.) https://doi.org/10.33779/2658-4824.2020.2.060-078

Gorbunova I.B., Zalivadny M.S. Music, mathematics and computer science: history of interaction. ICONI. 2020, no. 3, pp. 137–150. (In Russ.) https://doi.org/10.33779/2658-4824.2020.3.137-150

Bekarev A.M. Symbolic attributes of the information society. In: The synergetic paradigm: social synergy: collection of articles. (Бекарев A.M. Символические аттракторы информационного общества. В: Синергетическая парадигма: Социальная синергетика: сб. статей). Moscow: Progress-Traditsiya Publ., 2009, pp. 561–571.

Kiyashchenko L.P. The synergetics of complexity and the transinstitutional matrix of innovation. In: The synergetic paradigm: The synergetics of innovative complexity: To the 70th Anniversary of V.I. Arshinov: collection of articles. (Киященко Л.П. Синергетика сложностности и трансинституциональная матрица инноватики. В: Синергетическая парадигма: Синергетика инновационной сложности: к 70-летию В.И. Аршинова: сб. статей). Moscow: Progress-Traditsiya Publ., 2011, pp. 114‒127.

Romanov V.L. The complexity of innovative transformations: an aspect of the ambivalence of social self-organization. In: The synergetic paradigm: The synergetics of innovative complexity: collection of articles. (Романов В.Л. Сложность инновационных трансформаций: аспект амбивалентности социальной самоорганизации. В: Синергетическая парадигма: Синергетика инновационной сложности: сб. статей). Moscow: Progress-Traditsiya Publ., 2011, pp. 341–352.

Moskalyov I.E. The innovative complexity of self-learning systems. In: The synergetic paradigm: The synergetics of innovative complexity: collection of articles. (Москалев И.Е. Инновационная сложность самообучающихся систем. В: Синергетическая парадигма: Синергетика инновационной сложности: сб. статей). Moscow: Progress-Traditsiya Publ., 2011, pp. 352‒363.

Knyazeva E.N., Kurdyumov S.P. Synergetics: the nonlinearity of time and the landscapes of coevolution. (Князева Е.Н., Курдюмов С.П. Синергетика: нелинейность времени и ландшафты коэволюции). Moscow: KomKniga/URSS Publ., 2007. 254 p.

Vasilkova V.V. Sociology of communication and post-non-classical knowledge: structural connections. In: The synergetic paradigm: social synergy: collection of articles. (Василькова В.В. Социология коммуникации и постнеклассическое знание: структурные сопряжения. В: Синергетическая парадигма: Социальная энергетика: сб. статей). Moscow: Progress-Tradition Publ., 2009, pp. 544‒561.

Mainzer K. Thinking in Complexity: The Computational Dynamics of Matter, Mind, and Mankind. 5th Ed. Heidelberg; New York; Dordrecht; London: Springer, 2007. 500 p.

Malinetsky G.G. Synergetics. Crisis or development? In: Thinking in complexity: the computational dynamics of matter, mind and mankind. New synthesis. (Малинецкий Г.Г. Синергетика. Кризис или развитие? В: Сложносистемное мышление: материя, разум, человечество. Новый синтез). Moscow: URSS Publ., LIBROKOM Publ., 2009, pp. 5‒21.

Barantsev R.G. Synergetics and semiodynamics. In: Synergetics and methods of science: proceedings of the seminar. (Баранцев Р.Г. Синергетика и семиодинамика. В: Синергетика и методы науки: труды семинара). St. Petersburg: Nauka Publ., 1998, pp. 412‒415.

Barantsev R.G. History of semiodynamics: documents, conversations, comments. (Баранцев Р.Г. История семиодинамики: документы, беседы, комментарии). Moscow: URSS Publ., 2006. 376 p.

Barantsev R.G. Semiodynamics in the history of synergetics. In: The history of an idea as a dynamic research methodology. Part 1. (Баранцев Р.Г. Семиодинамика в истории синергетики. В: История идеи как методология динамических исследований. Ч. 1). St. Petersburg, 2001, pp. 113‒125.

Malinetsky G.G. Rem Georgievich Barantsev: accuracy — simplicity — scope of application. Advanced Science. 2020, no. 3, pp. 36‒39. (In Russ.) https://doi.org/10.25730/VSU.0536.20.030

Klyuev A.S. What is music in terms of synergetics. (Клюев А.С. Что такое музыка с точки зрения синергетики). Obshchestvo. Sreda. Razvitie. 2010, no. 1, pp. 125‒129.

Klyuev A.S. 20 Years of the synergetic philosophy of music. Review of the Russian Christian Academy for the Humanities. 2018, vol. 19, issue 1, pp. 317‒324. (In Russ.)

Kagan M.S. Aesthetics as a philosophical science: university lecture course. (Каган М.С. Эстетика как философская наука: университетский курс лекций). St. Petersburg: Petropolis Publ., 1997. 544 p.

Kolyadenko N.P. Synergetic approach in musical text interpretation. Vestnik muzykal'noi nauki. 2018, no. 2, pp. 12‒19. (In Russ.) https://doi.org/10.24411/2308-1031-2018-00043

Gorbunova I.B. About Mikhail Sergeyevich Zalivadny (1946–2023). Problemy muzykal'noi nauki / Music Scholarship. 2024, no. 2, pp. 178‒179. (In Russ.)

Ignatiev M.B., Zalivadny M.S., Reshetnikova N.N. An integrative model for the semantic space of music. In: An integrative model for the semantic space of music. (Игнатьев М.Б., Заливадный М.С., Решетникова Н.Н. Комплексная модель семантического пространства музыки. В: Комплексная модель семантического пространства музыки). St. Petersburg: Herzen State Pedagogical University of Russia, 2016, pp. 9‒12.

Berger N.A. Harmony as a spatial category of music: Dissertation for the degree of Cand.Sci. (Arts). (Бергер Н.А. Гармония как пространственная категория музыки: дис. … канд. иск.). Leningrad, 1979. 219 p.

Ignatiev M.B., Makin A.I. Linguistic-combinatorial modeling of music. In: Music, mathematics, computer science: an integrative model for the semantic space of music. (Игнатьев М.Б., Макин А.И. Лингво-комбинаторное моделирование музыки. В: Музыка, математика, информатика: комплексная модель семантического пространства музыки). St. Petersburg: Lan' Publ.; Planeta Muzyki Publ., 2023, pp. 259‒281.

Gorbunova I. B. The integrative model for the semantic space of music and a contemporary musical educational process: the scientific and creative heritage of Mikhail Borisovich Ignatyev. Educação. 2021, vol. 46, issue 1, no. e65, pp. 1–23. https://doi.org/10.5902/1984644453329

Ignatova M.P., Voloshinov A.V. The “two cultures” problem: from Charles Snow to Ilya Prigozhin. Chelovek. 2015, no. 4, pp. 36‒50.




DOI: http://dx.doi.org/10.56620/RM.2025.3.027-048

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.